Кафедра машин и оборудования нефтяной и газовой промышленности
Выпускная квалификационная работа
Тема: «Струйно-реактивный турбодетандер»
Москва 2015
Выпускная квалификационная работа (ВКР) посвящена решению задач по созданию энергетически эффективного отечественного оборудования и экологически чистых технологий при транспортировке природного газа. В ВКР рассматривается актуальность применения струйно-реактивной турбины и турбодетандора на её основе. Задачей работы является разработка технических предложений по конструкциям турбодетандеров на основе струйно-реактивных турбин.
Проведены численные эксперименты, в ходе которых определены: рациональная область применения агрегата, его основные геометрические параметры, характеристики потока газа во всех основных элементах конструкции и мощностные показатели машины. На основе результатов расчетов разработана конструкторская документация в составе: принципиальная схема, чертеж общего вида, сборочный чертеж, рабочие чертежи. С помощью разработанной документации подготовлены трехмерные модели агрегата, проведен прочностной анализ основных элементов конструкции во SolidWorks Simulation и смоделированы физические процессы истечения газа с помощью SolidWorks FlowSimulation, построены графики распределения основных параметров газа по всей длине дросселирующего канала турбодетандера.
В части безопасности и экологичности проекта выявлены вероятные чрезвычайные ситуации при эксплуатации турбодетандера на ГРС и намечены мероприятия по их предотвращению. Произведен расчет искусственного освещения операторной. В качестве экономического расчета произведена оценка экономической эффективности от внедрения струйно-реактивного турбодетандера на ГРС в качестве теплогенератора.
Результаты конструкторских и исследовательских работ позволяют сделать вывод о перспективности применения струйно-реактивных турбин для решения актуальных проблем энергосбережения.
Пояснительная записка содержит 147 страниц, 52 рисунка, 30 таблиц и 82 использованных источника и литературы.
Исходные данные: Конструкция струйно-реактивной турбины выполнена с использованием технических решений, нацеленных на эффективное использование энергии сжатого газа. Мощность турбины – 100 кВт. Частота вращения ротора турбины – 14590 об/мин. Давление газа на входе в турбину – 5,5 МПа. Давление газа на выходе турбины – 0,6 МПа.
Турбодетандеры — лопаточные машины непрерывногодействия, в которых поток проходит через неподвижныенаправляющие каналы (сопла), преобразующие часть потенциальной энергии газа в кинетическую, и системувращающихся лопаточных каналов ротора, где энергияпотока преобразуется в механическую работу, в результате чего происходит охлаждение газа. Они делятся понаправлению движения потока на центростремительные,центробежные и осевые; по степени расширения газа всоплах—на активные и реактивные; по числу ступенейрасширения—на одно- и многоступенчатые. Торможение турбодетандеров может осуществляться электрогенератором, гидротормозом, нагнетателем, насосом[6].Однако следует отметить, что при этом часть этой энергии должна быть затрачена на подогрев газа. Газ должен быть подогрет для предотвращения выпадения из него газогидратов в лопастных каналах турбины, приводящего к снижению ее надежности.
Содержание:
ВВЕДЕНИЕ
ГЛАВА 1. ОБЗОР НАУЧНО ТЕХНИЧЕСКОЙ ЛИТЕРАТУРЫ
1.1 Основные сведения о турбодетандерах
1.2 Струйно-реактивный турбодетандер
1.3 Теория истечения газов
1.4 Патентный поиск
1.5 Выводы к главе 1
ГЛАВА 2. ТЕХНИЧЕСКАЯ ЧАСТЬ РАЗРАБАТАННОЙ МОДЕЛИ АГРЕГАТА
2.1 Описание конструкции и принцип действия разработанного агрегата
2.2 Особенности и конструктивное исполнение деталей конструкции
2.3 Технологическая схема сборки и разборки агрегата
2.4 Выводы к главе 2
ГЛАВА 3. РАСЧЕТНАЯ ЧАСТЬ ОСНОВНЫХ ЭКСПЛУАТАЦИОННЫХ ПОКАЗАТЕЛЕЙ ДЕТАНДЕРА
3.1 Разработка математической модели и расчет параметров турбодетандера
3.2 Расчет 3D элементов конструкции в среде SolidWorks Flow Simulation
3.3 Расчет посадки струйно-реактивной турбины на вал в среде Mathcad
3.4 Расчет шпоночного соединения турбины на прочность
3.5 Статический расчет струйно-реактивной турбины на прочность
3.6 Выводы к главе 3
ГЛАВА 4. БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА
ГЛАВА 5. ЭКОНОМИЧЕСКИЙ РАСЧЕТ ПРОЕКТА
ВЫВОДЫ
ИСТОЧНИКИ ИФОРМАЦИИ
ПРИЛОЖЕНИЕ А. РЕЗУЛЬТАТЫ КОМПЬЮТЕРНОГО 3D МОДЕЛИРОВАНИЯ
ПРИЛОЖЕНИЕ Б. КОНСТРУКТОРСКАЯ ДОКУМЕНТАЦИЯ